TEMPERATURE FIELD IN A NONSTATIONARY
ADIABATIC GAS FLOW

I.M. Shnaid UDC 536.23

The conditions for the onset of thermal nonequilibrium in a nonstationary one-dimensional
gas flow with a small mechanical nonequilibrium are analyzed.

Under certain conditions, a nonstationary adiabatic gas flow becomes a thermally nonequilibrium
flow. This effect can be used to design simple highly efficient valveless reciprocating heat engines and
refrigerators [1]. It can also have a substantial effect on the characteristics of various valveless heat
engines and refrigerators with nonstationdry working-fluid flows, such as heat engines employing the Stirl-
ing cycle [2].

Among the characteristic features of the nonstationary gas flows in such thermal machines are small
gas-particle velocities and accelerations (w/a ~ 51072, Dw/dt ~ 1-10° m/sec?, a negligible (compared to
the duration of the machine's working cycle) transit time of rarefaction and compression waves in the flow,
and a close to one-dimensional nature of theflow. It has been also shown by Khaskind [3] that the pressure
gradient in the flow is small and that effects associated with the heat conductivity and viscosity of the gas
are negligible.

Accordingly, we shall examine the one-dimensional nonsteady flow of an inviscid thermally noncon-
ducting perfect gas in a thermally nonconducting tube of constant cross section, open at both ends (Fig. 1).
The gas parameters in the flow are defined by the following system of equations:
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Fig.1. Schematic diagram of the gas flow, i (t—m) =0, (2¢)
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where

n

n=Inp;, 1= InT; a® = nRT.

n—
We shall obtain solutions of the system of equations (2), which correspond to small values of 97/98x and
to negligible transit times of rarefaction and compression waves in the flow, In this practically important
case, we may set :

wix, §) = w, (x, 1)+ (x, 1), (3a)
T =T, )+ (x, 1), (3b)
a(x, =m0, (3¢)

where the small quantities w', 7', 7' characterize the disturbance introduced by a mechanical nonequilibri-
um of the flow, and we, T, correspond to a mechanical equilibrium flow (87 /ox = 0) at a gas pressure of Pe
= eXp Tre.

The functions (3) must satisfy the boundary conditions*

(0, ) = 1 (f), | (42)

7 (0, §) =1, (9), (4b)

w(0, ) =wo () {4c)
and the initial conditiont

T(x, t) =1,(%). (4d)

By substituting expressions (3) into Eq. (2) and eliminating terms of higher-order smallness, we
obtain a system of quasi-linear differential equations which define the required functions

ow, 1 d=m,

dx n dt =0 )

aa;e + ?9; - ddg;é =0 )
e (S 5o
e (B )
_gf @' —a') +w, —% (' —n)=0. (5e)

Since the quantities 7', w', 7' may be treated as small corrections to Tes Wg, Te OWing to a mech-
anical nonequilibrium of the flow, we have

w (0, £) =0, (6a)
a'(0, =0, (6b)
70 =0 (6c)
and correspondingly
@, (0, ) = w(®), (7a)
7. (0, ) =7 (), (Th)
Te (x’ ts) - Ts (x)’ (70)
7, (f) = 5 (). (7d)

*The system of coordinates is selected such that the value x = 0 corresponds to the tube end that serves
as the gas inlet.

T The solutions of (3) are independent of the initial condition w(x, tg) = 0 [3], because of the negligible pro-
pagation time of rarefaction and compression waves in the flow.
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Together with the uniqueness conditions (7), the Egs. (5a), (5b) define the principal terms of the solutions
~ the functions we(x, t), To(x, t), me(t). With the aid of the remaining equations of system (5), we(x, t),
To(X, t) can be determined from the uniqueness conditions (6) and the function 7'(x, t), w'(x, t), 7'(x, t).

In the integration of Eqgs. (5a), (5b), it is convenient to change the independent variable t for Toand we
for vg

o, =u, ( d \)_1 .
dt )
In this case, Eqs. (53), (5b) take the form
do, 1
e 4,
0x + n (82)
d dT
4, £ —1=0, 8b
while the conditions (7) may be written as
T, (0, M) =1, (7o), (93)
Y, (O’ Tp) == Tp (3"30)» (gb)
Te (x! J-‘;s) =T (JC), (90)
where
ns == My (ts).

From Eq. (8a), it follows that v, and w, are linear functions of the coordinate
0, (%, T09) = Tp (7o) — X
n

The field of 7, values is described by a first-order linear partial differential equation obtained by
substituting (10) into (8b)

9%, +[vﬂ(no)-—i 9% _ o, (11)
am, n ox

The system of characteristic equations that correspond to Eq. (11) can be represented in the form

dny = S S dv,. (12a)

X

Up (3t0) — —

n

System (12a) possesses two independent integrals
C,=xexp 2 j‘ v (7o) €xp —2- d 1, (12b)
n n

Cz == o ——Tg . (12(})

The general solution of Eq. (11) is an arbitrary function of the integrals Cy, C, [4]

A solution of (11) is uniquely defined if the uniqueness condition — the curve through which the in-
tegral surface (13) must pass — is given. The problem under consideration contains two uniqueness condi-
tions: an initial condition (9c) and a boundary condition (9a). In the general case, to these conditions cor-
respond two different integral surfaces (13) Fy(1,, x, 7o) = 0 and FZ(Te, X, my) = 0, One of these surfaces,
together with the function Tey(x, 7y that corresponds to it, satisfies the initial condition (9c) and describes
the field of 7, values in the gas initially contained in the tube. The other integral surface, together with
the corresponding function Tg(x, 7)) satisfies the boundary (9a) and describes the field of 7, values in the
gas admitted to the tube through the section x = 0. Thus, the field of 7o values is described by two func-
tions:
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a) x = ug(my)
T (%, o) = T, (¥, 7g);
b) x = uy(my)
Te (X, %) = Tea (X, ).
Here, ug(m) is the coordinate of particles situated in the cross section x = 0 at an initial pressure 7g.

From relation (10), it follows that, correct to small terms,

du
dm,

+ % — 1y (1) = 0. (14a)

By integrating the differentiation equation (14a) for the initial condition u(mrg) = 0, we obtain

o

Uy (1) = exp (— %) j % (&) exp

11

£ g (14b)
n

In the general case, a steady temperature discontinuity surface can exist in the cross section x
=ug(mg). From thermodynamic considerations it follows that for Tg5(0) — 7o(rg) = 0 the discontinuity is weak
and is experienced only by the derivatives, while for 74(0) — 74(rg) # 0 we have a strong discontinuity, in
which case a jump

At = 1,(0) — 7o (w,)
travels through the tube.

A method proposed in [4] will be used for obtaining a solution of Eq. (11), which corresponds to the
uniqueness condition (9a). By substituting the boundary condition (9a) into the relations (12b) and (12¢),
we obtain

Cl = (nﬂ)v (153)
Cz =T (no) ~ Tg, (15b)

where
o
I (mg) = S Ty (129) €XP — d 7.

By solving the Eq. (15b) with respect to 7,
my = (Cy) (15¢)

and substituting (15¢) into (15a), we obtain
Ci+J1e (Cy)l=0. (162)

From expressions (16a), (12b), (12c¢) it follows that

Oty —10o)
xexp % - j % (£) exp % dg =0. (16b)
o
Expression (16b) defines the function Te1{X, ) a8 an implicit function.
The solution of Eq. (11) that corresponds to the initial condition (9¢c) may be represented in the form
Tea (%, o) = T, (%) + W — 1, (17a)
where the auxiliary variable xg is defined as follows:

X, = Xexp n[,;ns — ‘j U (E) exp —E~——n—n§— dE. (17b)

kg

S
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Fig. 2. Temperature field in a nonstationary gas flow: a) for
increasing pressure; b) for decreasing pressure. 1) § = 0; 2)
¥) 0.5 3) ¥ =1.0; 4) ¥ = 1.5,

For evaluating the values of w', 7', ' it is advantageous to examine the simple case where d?m/dt?
= 0, dvy/dm, = 0, dr,/dm = 0, uglmg) = I. Here, the solutions of Eqgs. (5¢), (5d), (5e) that correspond to the
uniqueness conditions (6) may be written in the form

T = = (M2 (0) — M (), (18a)
n-+1
W = —— (M () 0 () — M2 Q) w(O)), (18b)
n42
where
M=
a

Expressions (18a), (18b) show that the disturbances 7', w', 7' caused by a mechanical nonequilibrium
of the flow have an order of smallness of M%. For conditions characteristic of thermal machines (w/a
~5°10%, this leads to extremely small (relative values below 10™% corrections to Te = expl[(n — 1)/n}1e,
Pg» Wo- Therefore, for nonstationary gas flows encountered in thermal machines one may accept, with an
accuracy completely satisfactory for engineering purposes, the following expressions:

T~ expt™ly, (192)
n

W= W, (19b)

Taking these expressions into account, let us analyze the conditions for the onset of thermal non-
equilibrium in gas flows of thermal machines, Analysis of expression (16b) yields the most significant re-
sults, since beginning with the moment at which ug(m) becomes equal to I, the temperature field in the flow
is described solely by the function 7,4(x, ).

From relations (16b) and (16c) it follows that

(20)

1
0Ta _ [1_ dry (o) ] e*p— [t — @ (T — )]

ox dm, Lo [ (T — To)]
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Since, in correspondence with (19a)
0T n—1 dr,

2 T

ox n ox

expression (20) makes it possible to determine the conditions for the thermal nonequilibrium of the flow
for x = ug(my). This expression shows that the onset of thermal nonequilibrium is defined by the tempera-
ture boundary conditions 7y(my).

If the gas flows to the tube from an adiabatic cylinder, then d7y(my)/dm, =1 and the flow is in thermal
equilibrium: 87o,/8x = 0; at the same time, 97/ 0my= 1.*

If the gas directly in front of the tube releases heat when the pressure is increased, and heat is sup-
plied to the gas when the pressure drops, we have dr,(r) /dvr0 < 1. It is noteworthy that this case is quite
typical for heating and refrigerating units; a positive temperature gradient(a'rel/ax > () is established in the
tube when the pressure increases (v, > 0), while a negative pressure gradient (8761/8X < 0) is established
when the pressure drops (vq < 0). It is characteristic that for dr(ry)/dr, < 1 also 87e¢/0m, < 1.

If the gas flows into the tube at a constant temperature and in addition dvy/dr, = 0, then for x. = ug(m,)
a stationary temperature field

x N l—-n
T=T, (1— —) (21)
1o,

will be present in the flow.

Finally, let us examine the case d7y(mry)/dm>1, i.e., when the gas directly in front of the tube is
supplied with heat when the pressure increases (vy > 0) and releases heat when the pressure drops (vy < 0).
Here, a negative pressure gradient (87¢;/8x < 0) corresponds to vy > 0, while a positive pressure gradient
(87e1/8x > 0) corresponds to vy < 0. At the same time, 07g;/8m, > 1.

For x 2 uq(mg), the flow is in thermal equilibrium, provided the gas particles in the tube are in ther-
mal equilibrium at the initial pressure,

The curves in Fig. 2 illustrate the aforesaid characteristics of the temperature field in nonstationary
gas flows typical of thermal machines. The curves were plotted for n = 1.66, vy = const, 87¢/0x =0, and
TS(O) — 'ro(ws) =0, The initial temperature distribution in the tube (p/ps = 1) and the temperature distribu-
tions that correspond to ud/nlvol = 0.7 and to various (but constant for each curve) values of P = d70(7r0)/d1r0
are given on the graphs.

It is obvious that all relations obtained are applicable in the case where the gas particles participate
in a polytropic process, in which case, n is the polytropic index.

NOTATION
p,p, T are the pressure, density, and temperature of the gas, respectively;
R is the gas content; '
n is an adiabatic exponent;
X is the Euler coordinate;
u is the coordinate of a fixed gas particle;
uy is the coordinate of the interface between the gas initially contained in the tube and
the supplied gas;
t is time;
w = du/dt;
T =1np;
T=[N/—-1]InT
v = w(dmy/dt)"4;
£ is the auxiliary variable of integration;
Cy, Cy are independent integrals of the system of characteristic equations;
I is the tube length;

*In order to determine the values of 97¢/0m, that correspond to given values of 8Te/ 5%, it is advantageous
to use expression (11).
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a is the speed of sound in the gas;

D/dt is the individual (substantive) derivative.

Subscripts

s represents initial state;

0 represents flow characteristics at the cross section x = 0;
e represents flow characteristics for or/8x = 0.
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